KETENE DITHIOACETALS III¹: THE CONJUGATE ADDITION OF KETENE DITHIOACETAL ANIONS TO CYCLIC \propto , **B**-UNSATURATED KETONES

Frederick E. Ziegler* and Coretta Chan Tam Sterling Chemistry Laboratory Yale University, New Haven, CT 06520

Abstract: The relative amounts of 1,2 to 1,4 addition products of several ketene dithioacetal anions to cyclic α , β -unsaturated ketones have been determined. The influence of solvent and counterion is reported.

Methods have been reported recently which permit the aprotic 1,4 addition of dithiane anions to α,β -unsaturated lactones² and ketones³. While dithiane anions serve as acyl anion equivalents, their vinylogs, ketene dithioacetal anions, have the potential of functioning as β -propionate anion equivalents (γ -substitution) or α,β -unsaturated acyl anion equivalents⁴ (α -substitution). We report in this Letter our results concerning the conjugate addition of these anions to several α,β -unsaturated ketones.

Deprotonation of 2-ethylidene-1,3-dithiane(<u>1</u>)⁵ is readily achieved with lithium diisopropylamide (LDA) (-15°C, THF, 0.5h) while 2-isopropylidene-1,3-dithiane(<u>2</u>) is 54% deprotonated (LDA, THF, -15° to -5°C, 0.75h) under similar conditions. Deprotonation of <u>2</u> to the extent of 82% could be achieved using LDA-HMPA (3 equiv)-THF for 0.5 h at 0°C. The degree of deprotonation was determined by GC-MS of the D₂O quenched anions, which provided 2-deuterio-2-isopropylidene-1,3-dithiane (82%) and undeuterated starting material <u>2</u> (18%).

The conjugate additions were effected at -78° C followed by warming to 25°C and eventual protonation or alkylation of the resultant enolates. The regioselectivity of the reaction of these lithium anions in THF and/or THF-HMPA or their cuprous salts in THF with cyclohexenone (<u>3</u>), cyclopentenone(<u>4</u>), and 2-methylcyclopentenone (<u>5</u>) is outlined in the Table.

4717

Table'

Entry	Ketene- Dithioacetal	Enone	Rxn <u>Pro</u> Conditions	oducts (rel %)	Distilled <u>Yield %</u>
1	١	3	LDA, THF	7 (71) <u>6</u> (20) 1,2 (9)	68
2	1	3	LDA, THF CuI'(MeO) ₃ P	<u>6</u> (98) <u>7</u> (2)	67
3	1	5	LDA, THF	<u>8a</u> (60) <u>9a</u> (16) 1,2 (24)	82
4	1	5	LDA, THF CuI'(MeO) ₃ P	<u>9a</u> (98) <u>8a</u> (2)	54
5	1	5	LDA, THF HMPA	<u>9a</u> (100)	66
6	1	4	LDA, THF	8b (70) 9b (26) 1,2 (4)	44
7	1	5	1) LDA,THF,HMPA 2) CH ₃ I	<u>9c</u> (89) <u>9d</u> (6) <u>9a</u> (5)	70
8	2	5	LDA, THF HMPA	<u>9e</u> (100)	71
9	2	5	1) LDA,THF,HMPA 2) CH ₂ =CHCH ₂ Br	<u>9f</u> (90) <u>9g</u> (10)	68
10	1	5	1) LDA,THF,HMPA 2) CH ₂ =CH-CH ₂ Br	<u>9h</u> (90) 9i (6) 9a (4)	67

a) all new compounds were identified by elemental analysis, NMR, GC-MS and IR.

The lithium anion of 2-ethylidene-1,3-dithiane shows regioselectivity (entries 1, 3, 6) for 1,4- γ substitution. The γ/α ratio of the 1,2 products has not been determined. A significant reversal of selectivity is observed by using 3 equiv. of HMPA (entries 5 and 8) or the cuprous salt of the anion (entries 2 and 4), generated by addition of CuI^(MeO)₃P to the lithium anion, providing the 1,4- α product as the dominant isomer. When the conjugate addition of entry 2 was conducted at -78°C for 0.25 h and then quenched with methanol at -78°C, the 1,4- α product was obtained along with unreacted cyclohexenone, indicating, in this

<u>7</u>

<u>8</u> a, $R_1 = CH_3$, $R_2 = H$ b, $R_1 = R_2 = H$

R4 R2 S S 9 a, $R_1 = CH_3$, $R_{2-4} = H$ b, $R_{1-4} = H$ c, $R_1 = R_2 = CH_3$, $R_3 = R_4 = H$ d, $R_1 = R_2 = R_4 = CH_3$, $R_3 = H$ e, $R_1 = R_3 = CH_3$, $R_2 = R_4 = H$ f, $R_1 = R_3 = CH_3$, $R_2 = C_3H_5$, $R_4 = H$ g, $R_1 = R_3 = CH_3$, $R_2 = R_4 = C_3H_5$ h, $R_1 = CH_3$, $R_2 = R_4 = C_3H_5$, $R_3 = R_4 = H$ i, $R_1 = CH_3$, $R_2 = R_4 = C_3H_5$, $R_3 = H$

instance, that the 1,4 product does not arise upon warming to 25°C.

The enolates generated in the conjugate additions can be regioselectively alkylated using methyl iodide (entry 9) or allyl bromide (entries 10 and 11). The allylated products $\underline{9f}$ and $\underline{9h}$ are homogeneous substances and are assumed to have the bulky dithianyl group trans to the allyl residue⁶.

A typical experimental procedure (entry 7) is as follows: To a solution of 0.77 mmole of LDA in 3.0 mL of dry THF at -20° C (N₂) was added a solution of 114 mg (0.77 mmol) of <u>1</u> in 1.0 mL of THF and the mixture was stirred at -20° to -10° C for 0.5 h. To the deep red solution at -10° C was added 0.4 mL (2.3 mmol) of HMPA and the mixture was cooled to -78° C (alternatively, 1.5 equivalents of a solution of cuprous iodide-trimethylphosphite complex in THF solution was added to the deep red solution at -78° C and stirred for 0.5 h forming a yellow suspension). A solution of 75 mg (0.77 mmol) of 2-methylcyclopentenone (<u>5</u>) in 1 mL of THF was added at -78° C. The mixture was warmed to 0°C over 1 h, stirred at 0°C for an additional 0.5 h, then cooled to -78° C, and 0.07 mL (1.2 mmol) of neat methyl iodide was added. The reaction mixture was allowed to warm to 25°C over 3 h and stirred at 25°C for 13 h. The mixture was taken up in hexane and washed successively with water and saturated brine. After drying (MgSO₄) of the hexane solution and concentration <u>in vacuo</u>, the crude reaction product was distilled (Kugelrohr, 110°C, 0.02 mm) to afford 155 mg of a pale yellow liquid which contained 89% <u>9c</u> (70% yield), 5% <u>9a</u> and 6% <u>9d</u>, as determined by vpc analysis (1.5% 0V-101, 160°C). The vpc collected materials had the following spectral properties: <u>9c</u>: (CCl₄, 270 MHz) δ 1.00 (3H, s), 1.21 (3H, s), 1.72-2.37 (6H, m), 2.50-2.63 (1H, m), 2.79-2.84 (4H, m), 5.42 (1H, dd, J_{cis} = 10.2 Hz, J_{gem} = 1.5 Hz), 5.50 (1H, dd, J_{trans} = 17.2 Hz, J_{gem} = 1.5 Hz), and 5.88 (1H, dd, J_{trans} = 1.72 Hz, J_{cis} = 10.2 Hz, j_{cis} = 10.2 Hz); ir (CCl₄) 1745(s) and 1625(w) cm⁻¹; mass spectrum (70 eV) m/e (rel int) 256 (54, M⁺), 145 (100), 106 (33), and 71 (37).

<u>Anal</u>. Calcd for C₁₃H₂₀OS₂: C, 60.89; H, 7.86. Found: C, 60.97; H, 7.78.

<u>9d</u>: mass spectrum (70 eV) m/e (rel int) 270 (15, M^+), 256 (23), 145 (100), 106 (34), and 71 (22).

<u>**9a</u>: identical in all respects to the major component obtained in entry 5.**</u>

ACKNOWLEDGMENTS: We express our thanks to the National Institutes of Health (CA 16432) and Hoffmann-LaRoche (Nutley) for financial support of this work. The Bruker 270 MHz instrument was supported by National Institutes of Health Research Grant No. 1-P07-PR00798 from the Division of Research Sources.

REFERENCES AND NOTES:

- 1. Part II: F.E. Ziegler and C.C. Tam, J. Org. Chem., <u>44</u>, 0000 (1979).
- 2. F.E. Ziegler and J.A. Schwartz, J. Org. Chem., 43, 985 (1978) and ref. cited therein.
- P.C. Ostrowski and V.V. Kane, Tetrahedron Lett., 3549 (1977); C.A. Brown and A. Yamaichi, Chem. Commun., 100 (1979).
- D. Seebach and M. Kolb, Justus Liebigs Ann. Chem., 811 (1977) and E.J. Corey and A.P. Kozikowski, Tetrahedron Lett., 925 (1975).
- 5. F.E. Ziegler and C.M. Chan, J. Org. Chem., <u>43</u>, 3065 (1978).
- M.F. Semmelhack, A. Yamashita, J.C. Tomesch, and K. Hirotsu, J. Am. Chem. Soc., <u>100</u>, 5566 (1978).

(Received in USA 14 September 1979)